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Abstract

Fishing trip cost is an important element in evaluating economic performance of fisheries,

assessing economic effects from fisheries management alternatives, and serving as input

for ecosystem and bioeconomic modeling. However, many fisheries have limited trip-level

data due to low observer coverage. This article introduces a generalized linear model (GLM)

utilizing machine learning (ML) techniques to develop a modeling approach to estimate the

functional forms and predict the fishing trip costs of unsampled trips. GLM with Lasso regu-

larization and ML cross-validation of model are done simultaneously for predictor selection

and evaluation of the predictive power of a model. This modeling approach is applied to esti-

mate the trip-level fishing costs using the empirical sampled trip costs and the associated

trip-level fishing operational data and vessel characteristics in the Hawaii and American

Samoa longline fisheries. Using this approach to build models is particularly important when

there is no strong theoretical guideline on predictor selection. Also, the modeling approach

addresses the issue of skewed trip cost data and provides predictive power measurement,

compared with the previous modeling efforts in trip cost estimation for the Hawaii longline

fishery. As a result, fishing trip costs for all trips in the fishery can be estimated. Lastly, this

study applies the estimated trip cost model to conduct an empirical analysis to evaluate the

impacts on trip costs due to spatial regulations in the Hawaii longline fishery. The results

show that closing the Western and Central Pacific Ocean (WCPO) could induce an average

14% increase in fishing trip costs, while the trip cost impacts of the Eastern Pacific Ocean

(EPO) closures could be lower.

Introduction

Economic data on fishing trip costs in commercial fisheries are important for effective fisheries

management. They can be used to evaluate the economic performance of fisheries [1–3],
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estimate potential economic impacts from various conservation and management measures

[4–6], and serve as input for ecosystem and bioeconomic modeling [7–10]. In the U.S. com-

mercial fisheries, a census of trip-level information is often available for landings and fishing

effort from the federal logbooks, and revenues from the commercial receipts, but not with fish-

ing trip costs. Fishing trip costs, sometimes refer as variable costs, are costs that incurred dur-

ing a fishing trip, while insurance, vessel repairs and maintenances, etc., are considered as

fixed costs [11, 12]. Trip costs vary largely by trips because trip length, travel distance, gear

type, etc., can be different by trips. They can also vary across vessels because vessel size and

engine power affect fuel consumption [13]. Often time, trip costs were collected by ship

observers, and only a sample of trip cost data were available due to limited observer coverage.

The lack of individual trip cost information makes it difficult to evaluate the trip costs and

profitability of individual vessels and overall fisheries. As commercial fishing behavior is

largely driven by profitability, absence of cost information makes it difficult to predict fishing

behavior. In addition, fisheries management alternatives may have different effects on individ-

ual or subgroups of a fishery. Without knowing the individual trip costs under different man-

agement alternatives, it is difficult to evaluate economic impacts (such as profitability) of

management actions at sub-fleet level. In order to support effective fisheries management and

conservation, better understanding of the trip costs for individual vessels and an entire fleet

and how these costs may change in response to regulatory changes is needed. One method to

address this issue is to develop modeling approach to estimate trip costs and predict trip costs

of unsampled trips.

Previous research used various modeling approaches to estimate trip costs. Some studies

used average costs in different units and extrapolate total trip costs, e.g. per unit of effort [7],

travel distance [8], and day and travel day [14]. Some studies developed cost functions for indi-

vidual cost items using ordinary least square (OLS) regressions [12] and generalized additive

models (GAM) [15]. But this approach required intensive modeling by estimating cost items

individually. Others studies used regressions to estimate missing trip costs using sampled trip

costs. Li and Pan [16] used OLS with log transformed trip costs and trip-level and vessel-spe-

cific covariates to estimate the Hawaii longline trip costs using one year of cost-earnings survey

data. Although OLS with log transformation can be used to model skewed data, studies found

that retransforming the log-scale dependent variable would introduce bias [17–19], thus bias

correction could become necessary. But there is no single correct method to correct bias and

some methods could be labor intensive [20, 21]. To address non-normal distribution of fishing

trip cost data, Das [11] and Kirkpatrick et al. [22] used GLMs with trip-level and vessel-specific

covariates to estimate and predict trip costs in the U.S. northeast and Atlantic commercial fish-

eries, respectively. Although these previous studies used regressions to predict trip costs for

unsampled trips, none of them evaluated the predictive power of the models.

To create trip cost model that can be used for cost prediction of unsampled trips and other

applications, it runs into three common phenomena. First, the model needs to handle the

skewed trip cost distribution as past studies found the fishing trip costs of commercial fishing

fleets had skewed distributions [11, 15, 16, 22]. Second, the model needs to have good predic-

tive power, so that unsampled and future trip costs can be predicted. Third, the modeling

approach should include good predictor selection method because there is no clear guidance

from literatures about what specific predictors to be included in the model that predicts trip

costs. In addition, often time the predictors like trip-specific and vessel-specific variables are

highly correlated. Modeling with highly correlated predicators may lead to improper selection

of predictors [23] and biased estimated coefficients [24]. Therefore, it is important to use a

modeling approach that can handle correlated predictors and overcome multicollinearity.

These three phenomena were not fully addressed in the previous research that modeled trip
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costs using sampled data and predicted trip costs of unsampled trips. Therefore, our study

used generalized linear model (GLM) and machine learning (ML) algorithms to estimate the

functional forms of trip cost models and predict trip costs, so that the three phenomena can be

fully addressed. The algorithms included 1) GLM to address the non-normal distributed trip

costs and potential heteroscedasticity in the error term, 2) least absolute shrinkage and selec-

tion operator (Lasso) regularization and supervised ML to select predictors that best fit the

model, avoid multicollinearity, and minimize prediction error, and 3) n-fold cross-validation

techniques in ML to evaluate the predictive power of the model. We applied this modeling

approach by using the sampled trip costs and the associated trip-level fishing operational data

and vessel characteristics from federal logbooks in the Hawaii and American Samoa longline

fisheries. Using the estimated models, we could evaluate fisheries regulatory impacts at fleet-

wide, sub-fleet, and even individual vessel levels.

The two longline fisheries in this study provided a good opportunity for a case study in trip

cost modeling because 1) the two fisheries used similar fishing gear (longline), so trip cost

items are similar; but they targeted different tuna species and operated in different part of the

Pacific Ocean, so the predictors and their effects might be different; 2) the sampled trip cost

data were collected by observers for a long time series and had good coverage of the fleets, and

they were representative of the population in terms of fishing area; and 3) a large selection of

trip-specific and vessel-specific variables were available in the federal logbooks for all fishing

trips. These provided a good basis for modeling, validating models’ predictive power, and

allowing trip cost predictions for unsampled trips and an entire fleet. To evaluate the model fit-

ting, we compared the estimated trip costs with the actual trip costs for the same sampled trips.

In addition, we used the estimated model for policy analysis by predicting and comparing the

trip costs for trips operated under different management actions. Knowing how trip costs

changes at individual vessel level in response to management actions provides useful informa-

tion regarding fishery’s resilience to current and future fisheries management alternatives. To

our knowledge, no empirical study has used supervised ML and GLM with Lasso regulariza-

tion simultaneously for modeling fishing trip costs. For the American Samoa longline fishery,

this is the first research effort to model fishing trip costs.

Materials and methods

GLMs are well known in fisheries research, but ML is less so. Building a model through ML

approach starts with 1) using sub-set of a sample data, known as “training data”, to find an

algorithm to run on the training data; 2) training the algorithm through iterative process to

build the model until the algorithm reaches an acceptable level of performance (such as certain

level of accuracy and precision); and 3) the resulting trained algorithm is the ML model. One

of the applications of supervised ML techniques is to run regression analysis such as OLS and

GLM as they target to reproduce the output value (to estimate dependent variable from a set of

independent variables) from a training data and then the trained model can be used for predic-

tion using new data.

There are several differences between ML vs. traditional econometric methods. Linear

regression in traditional econometric textbooks emphasizes on obtaining unbiased estimators

for a pre-defined model from economic theory but not so on model validation. ML, on the

other hand, focuses on a model’s predictive power. Out-of-sample (i.e. sample not used for

training) cross-validation in ML is used to assess a model’s predictive power [25, 26]. ML liter-

ature allows a bigger role of data than traditional econometrics literatures. For example, ML

literature is more concerned with model over-fitting and uses regularization to prevent it, with

the amount of regularization controlled by the out-of-sample predictive performance. One
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common form of regularization is to add a penalty term in Lasso for predictor selection [25,

27]. The advantage of using Lasso regression is the ability to perform both predictor selection

and regularization that minimizes a model’s prediction error [28] and overcome multicolli-

nearity [29, 30]. Lasso is also better than stepwise regression, the most predominant method

for variable selection [31], resulting in higher explained variance [32], better variable selection

and coefficient estimation [33], and out-of-sample prediction [34]. Although other machine

learning algorithms such as random forests and gradient boosting can also handle large num-

ber of predictors, correlated predictors, and non-linear relationships, and GAM can handle

non-linear, “wiggling” relationships between trip cost items and explanatory variables [15]; we

chose to use parametric (GLM) model because it is superior in model interpretation [32] and

inference [35], so that we can use the estimated models for other economic applications. The

estimated coefficients in GLM are easier to interpret in both magnitude and direction of pre-

dictor effects, and they can be used to evaluate the effects from changes in covariates on trip

costs. For example, when climate factors affected travel distance, the estimated coefficient for

travel distance can be used to evaluate the marginal effect of a climate factor on trip costs.

Unlike regression, random forests and gradient boosting are suffered from extrapolation prob-

lem because they cannot predict values outside the domain of the training dataset [35]. GAM

also has limited capacity to extrapolate data [36]. This could be a problem when we want to

forecast trip costs for unsampled and future trips, especially when spatial expansion has

occurred in the Hawaii deep-set longline fishery [37], and could be continued in the future as

tuna habitat has shifted poleward due to warmer ocean [38]. Another reason that we chose

GLM over GAM was when we examined the relationships between trip costs and trip-specific

variables such as trip distances and fishing days in graphical forms, they do not have wiggling

relationships.

Lasso was introduced by Tibshirani [28] as a tool for subset selection. It minimizes the sum

of the squared residuals in a regression model, subject to a constraint on the sum of the abso-

lute values of coefficients,
Pk
j¼1
jbjj � t, where t�0 is a tuning parameter. For GLM, it includes

a random component: Yi ~N(μ, σ2), a systematic component: Zi ¼ b0 þ
Pp
j¼1
bjxij, and a link

function g where gðmiÞ ¼ Zi ¼ b0 þ
Pp
j¼1
bjxij; and E½Yi� ¼ g � 1ðZiÞ. The objective of GLM

with Lasso penalty term is to solve:

min
Pn
i¼1
ðyi � b0 �

Pk
j¼1
bjxijÞ

2
þ l
Pk
j¼1
jbjj ð1Þ

This is the same as minimizing the sum of the squared residuals plus a penalty term that

penalizes on the sum of the absolute coefficients, where λ is the tuning/regularization parame-

ter. When λ is sufficiently large, Lasso leads to solutions with some βj coefficients equal to

zero. Iteratively Reweighted Least Squares (IRLS) is usually used to find the maximum likeli-

hood estimates of GLM [39]. For GLM with Lasso, IRLS algorithm essentially is an iterative

process that at each step new weights (w1, . . ., wn) and new working dependent variables

(z1, . . ., zn) are computed, to solve the following penalized weighted least squares problem

repeatedly until an optimal λ value is found:

minf
Pn

i¼1
wiðzi � b0 �

Pk
j¼1
bjxijÞ

2
þ l
Pk
j¼1
jbjjg ð2Þ

Model estimation

Model estimation in this study involved two steps, the first step was to determine the func-

tional forms (predictors in the models) for trip cost estimation by training ML models (using a

subset of sample data as “training data”) that used Lasso regularization techniques and n-fold

cross-validation approach. In this step, we included all possible covariates and ran Eq (2) using
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“H2O machine learning and predictive analytics” platform in R interface [40]. “H2O” platform

allows running both GLM using Lasso and performing cross-validation simultaneously so that

predictor selection can be performed and at the same time model performance and predictive

power can be evaluated. H2O fits GLM using IRLS to find the maximum likelihood estimates

of GLM and the best λ is selected through cross-validation performance, so that the best λ
selects covariates that produce the lowest model prediction errors. We ran Eq (2) using differ-

ent distribution and link function assumptions. In the first step, 80% of the cost data were used

as the training data and 20% were used as the test data because this 80/20 division was recom-

mended for providing a more accurate trained model [41]. Training data were used to select

predictors and compare models using cross-validation to select a final model. Test data were

used for unbiased assessment of the trained model’s performance [42]. For cross-validation of

ML models in the first step, we can select different options like 10-fold or 20-fold cross-valida-

tion to perform. With 10-fold cross-validation on the training data, the training dataset was

randomly divided into 10 equal sized subsamples. The model was fitted on 9 subsamples and

the remaining one subsample was held out to compute model performance. This process was

repeated 10 times and each time a different subsample was used as the validation set. Conse-

quently, 10 cross-validation sets were produced so that every observation was used once for

validation and nine times for model estimation. With 20-fold cross-validation, the training

data was randomly divided into 20 equal subsamples and 20 cross-validation sets were pro-

duced and being evaluated. With higher number of folds, more training data could be used in

each iteration of the cross-validation, and this would lower the bias in estimating the out-of-

sample error [43]. Each of the cross-validation sets produced predictions on their subsample

that was held out as the validation data (out-of-fold predictions), and model performance was

being evaluated against the actual values of the validation data in terms of error metric. We

applied 10-fold cross-validation to train the Hawaii model 10 times to find the best model as

this is a more unbiased approach for moderate sample sizes [44, 45]. We applied 20-fold cross-

validation for the American Samoa models due to the small sample size. The prediction results

for training data and test data, and the cross-validation predictions will show how well the

models in prediction.

In the second step of the model estimation, we used 100% of the sampled trip cost data and

ran the functional form determined in the first step to estimate the model coefficients, using

different distribution and link function assumptions, and OLS for comparison purposes. Mod-

els were fitted using R [46]. In this step, we also looked at the residual analysis in graphical

forms for residual performance from different distribution and link function assumptions.

Residual analysis was evaluated by examining plots of residuals vs. fitted values and normal

probability plots of residuals (normal Q-Q plots). A model with good fit would show symmet-

rical distribution of residuals vs. fitted values and normal distribution of residuals. If the stan-

dardized residuals are normally distributed, the Q-Q plot will show a straight diagonal line.

Finally, we determined the best model based on prediction results from the first step and resid-

ual performance in the second step.

The fisheries

In the U.S. Pacific Island region, the Hawaii longline fishery and the American Samoa longline

fishery are the two most important commercial fisheries, in both monetary support to local

economies and dietary support by providing high quality of sustainable seafood. There are two

segments in the Hawaii longline fishery, a deep-set longline fishery targeting bigeye tuna, and

a shallow-set longline fishery targeting swordfish, with the majority of the fishing ground out-

side the U.S. Exclusive Economic Zone (EEZ) in the north Pacific Ocean. The fishery is
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managed under numerous regulations by the Western Pacific Regional Fishery Management

Council (WPRFMC) including the bigeye tuna catch limits that could close certain fishing

areas and consequently trip costs would be affected. The fishery is operated in two manage-

ment areas: Western and Central Pacific Ocean (WCPO, west of 150˚W) and Eastern Pacific

Ocean (EPO, east of 150˚W). Fig 1 shows the two fishing areas and the distribution of fishing

effort (number of sets) in the North Pacific Ocean by the longline vessels based in Hawaii and

California in 2018.

The American Samoa longline fishery is the second largest commercial fishery managed by

the WPRFMC, and the fishery mainly harvests albacore tuna within EEZ in the South Pacific.

Trip cost items between the two fisheries were similar because both used longline gear. These

included fuel, bait, gear, provisions, ice/freezer, oil, and communication. The only extra cost

Fig 1. Hawaii longline fishery fishing areas: Spatial distribution of the total number of sets by longline vessels based in Hawaii and California

fishing within the North Pacific Ocean, 2018 (provisional data). Source: PIFSC data report DR-12-047, https://doi.org/10.25923/dq48-ef09.

https://doi.org/10.1371/journal.pone.0257027.g001
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item was lightsticks cost for Hawaii shallow-set trips because lightsticks were used to attract

swordfish. Although the cost items were similar, the differences in trip characteristics (e.g. fish-

ing geographic location and trip length) could have different effects on trip costs. For example,

fuel cost was the main trip cost item for both fisheries that comprised more than half of the

total trip costs, and bait cost was the second most important cost item that comprised around

25% and 30% of total trip costs for Hawaii and American Samoa, respectively [47]. But the dif-

ferences in fishing grounds between the two fisheries (outside EEZ for Hawaii vs. inside EEZ

for American Samoa) and trip length (~a month for Hawaii and 1–2 months for American

Samoa) would mean that Hawaii longline trips spent more time in traveling to fishing grounds

and less on fishing. Therefore, although both fisheries spent more than half of the trip costs on

fuel, fuel efficiency could be different because of different travel distances to fishing grounds

[48], while spending more time on fishing would result in higher percentage of bait cost in

American Samoa. These differences in trip characteristics would affect the underlying predic-

tors of trip costs.

Covariates

Fuel cost and bait cost were the top two cost items that comprised approximately 70% of total

trip costs for both Hawaii and American Samoa longline fisheries [47]; therefore, vessel-spe-

cific and trip-specific variables associated with these two cost items were incorporated into the

trip cost models. Total distance traveled, average travel distance to fishing ground, trip length,

fuel price, vessel length, age, gross tonnage, and net tonnage were correlated with fuel cost.

Number of fishing days was associated with bait used. Fishing days might also be related to

other trip cost items such as lightsticks cost, gear cost, and provision cost. The squared-term of

these variables were also considered to test out the linear or nonlinear nature. Trip type (deep-

set or shallow-set) was another important covariate as Kalberg and Pan [12] found substan-

tially higher variable costs for shallow-set trips in comparison with deep-set trips in 2012. Trip

type was modeled as a dummy variable in the Hawaii models. These vessel-specific and trip-

specific predictors were obtained or derived from the federal logbooks [49, 50]. Details about

definitions and methods to derive these predictors can be found in S1 Appendix. Tables 1 and

2 show the summary statistics of the covariates used in the final trip cost models for the Hawaii

and American Samoa fisheries, respectively. For both fisheries, the trips and vessels with trip

Table 1. Summary statistics of the covariates in Hawaii longline fishery.

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

Trips with Fishing Costs (n = 2,746) Trips without Fishing Costs

(n = 17,161)

All Trips (n = 19,907)

Vessel length (feet) 73.2 9.6 70.7 10.5 71.0 10.4

Vessel gross tonnage 115.1 37.7 106.9 39.9 108.1 39.7

Vessel gross tonnage per foot 1.5 0.4 1.5 0.4 1.5 0.4

Monthly fuel price ($/gallon) 4.7 0.6 4.7 0.6 4.8 0.6

Fishing days per trip 14.8 4.3 13.3 3.9 13.5 4.0

Average travel distance to fishing ground (km) 870 455 758 413 773 421

Total travel distance (km) 2,930 1,217 2,565 1,109 2,615 1,131

Vessels with Fishing Costs

(n = 167)

Vessels without Fishing Costs

(n = 16)

All Vessels (n = 183)

Vessel length (feet) 70.9 11.4 64.4 14.6 70.3 11.8

Vessel gross tonnage 107.8 43.4 85.9 51.0 105.9 44.4

Vessel gross tonnage per foot 1.5 0.4 1.2 0.6 1.4 0.5

https://doi.org/10.1371/journal.pone.0257027.t001
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cost data had similar characteristics when compared with the overall trips and vessels. This jus-

tifies using the sampled trip cost data to model and estimate the fleet-wide trip costs.

Trip cost data

The trip cost data used in this study were collected through the continuous trip-level economic

data collection programs at the Pacific Islands Fisheries Science Center (PIFSC) that were

started in the latter part of 2004 for the Hawaii longline fishery and in 2006 for the American

Samoa longline fishery. Trip cost data were collected by observers at sea during the observed

fishing trips. The average observer coverage rates were 25% and 18% in Hawaii and American

Samoa, respectively [47].

A total of 2,948 trips were observed and gathered trip cost data in the Hawaii longline fish-

ery between 2005 (the first year with cost data collected for the whole year) and 2018. Some

observations were excluded from model estimation including trips with some missing cost

items (n = 119), outliers (n = 64), and missing logbook data (n = 19). There were 164 trips with

trip cost data in the American Samoa longline fishery between 2006 and 2018, and 19 outliers

were excluded. The final dataset for analysis included 2,746 trips for Hawaii for 2005–2018

(13.8% of the 19,907 total fishing trips) and 155 trips for American Samoa for 2006–2018 (10%

of the 1,540 total fishing trips) (S1 Table).

Although the portions of fishing trips with trip cost data were low, the trip cost data used

for modeling had extensive coverage of vessels in the fleets; therefore, there was no bias in cer-

tain types of vessels missing trip cost data. The Hawaii trip cost data used for modeling covered

91% of active vessels (167 vessels) between 2005 and 2018, and these 167 vessels represented

99% of all fishing trips in the study period. For American Samoa, the trip cost data covered a

large majority of active vessels (83%, n = 24) between 2006 and 2018, and these 24 sampled

vessels represented 93% of all fishing trips in the study period.

Hawaii fishing trip costs were found to be different by fishing area due to differences in

travel distance, and more apparent for deep-set trips than shallow-set trips [47]. In order to

determine how well the trip cost data generalized to the population in terms of the distribution

of trips across different fishing areas, one sample chi-square tests were conducted for both trip

types (Table 3). The test results showed that the distribution of trips by fishing area in the sam-

ple was representative of all trips (χ2 = 0.297, p = 0.862 for deep-set trips and χ2 = 0.854,

Table 2. Summary statistics of the covariates in American Samoa longline fishery.

Trips with Fishing Costs (n = 155) Trips without Fishing Costs

(n = 1,385)

All Trips (n = 1,540)

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

Vessel length (feet) 73.1 8.1 75.9 10.5 75.6 10.3

Vessel gross tonnage 113.6 33.2 121.0 39.2 120.2 38.7

Vessel gross tonnage per foot 1.5 0.3 1.6 0.4 1.6 0.4

Annual fuel price ($/gallon) 3.1 0.8 3.4 0.6 3.4 0.7

Fishing days per trip 33.4 15.8 30.6 18.1 30.8 17.9

Average travel distance to fishing ground (km) 209 116 284 219 276 212

Total travel distance (km) 2,023 1,097 2,199 1,467 2,182 1,435

Vessels with Fishing Costs (n = 24) Vessels without Fishing Costs

(n = 5)

All Vessels (n = 29)

Vessel length (feet) 76.8 10.5 77.9 13.8 77.0 10.9

Vessel gross tonnage 127.8 41.9 129.2 48.5 128.0 42.2

Vessel gross tonnage per foot 1.6 0.4 1.6 0.5 1.6 0.4

https://doi.org/10.1371/journal.pone.0257027.t002
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p = 0.653 for shallow-set trips), as p value > 0.05 indicated that the null hypothesis of the

equality of proportions in sample and population was not rejected. The chi-square test results

and the extensive coverage of vessels in the Hawaii longline fleet supported the use of the esti-

mated trip cost model to extrapolate unsampled trips.

Figs 2 and 3 display the inflation adjusted (to 2018 dollar values) trip cost distributions for

the sampled trips that were used for analysis in the Hawaii and American Samoa longline fish-

eries, respectively. The average trip cost was $33,738 in Hawaii and $41,334 in American

Samoa.

Both Figs 2 and 3 show that the cost distributions for the sampled trips are not normal but

rather have a fat tail on the right. This may be due to the large variances of travel distances for

Table 3. Distribution of trips by fishing area, and chi-square results for trips by fishing area with sample and population proportion, for deep-set and shallow-set

trips.

Sample deep-set Population deep-set Sample shallow-set Population shallow-set

Trips fished in WCPO only 77.7% 77.7% 57.5% 57.1%

Trips fished in EPO only 9.1% 9.4% 23.3% 24.7%

Trips fished in both WCPO & EPO 13.2% 12.9% 19.2% 18.3%

Total number of trips 2,068 18,894 678 1,013

χ2 (df = 2) 0.297 (p = 0.862) 0.854 (p = 0.653)

https://doi.org/10.1371/journal.pone.0257027.t003

Fig 2. Histogram of total trip costs for sampled trips in Hawaii longline fishery: 2005–2018.

https://doi.org/10.1371/journal.pone.0257027.g002
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both fisheries and the two-gear type usage in the Hawaii longline fishery. S2 Appendix shows

the statistical tests for trip cost distributions in Hawaii and American Samoa, and the results

show that both distributions are skewed right.

Policy variables

The Hawaii longline fishery had experienced short-term area closures five times in the WCPO

and five times in the EPO between 2005 and 2018 [51]. However, the area closures were appli-

cable to certain types of vessels. When the bigeye catch limit in EPO was reached, the EPO was

closed only to the vessels greater than 24 feet in vessel length, while smaller vessels were still

allowed to fish in the EPO. When the bigeye catch limit in WCPO was reached, the WCPO

was closed only to the vessels with Hawaii longline permit and they had to travel to further

area to fish, while the vessels with dual permits (with both Hawaii and American longline per-

mits) were still allowed to fish in the WCPO. Thus, different groups of vessels may react differ-

ently to the area closures [51, 52]. During the area closures, fishermen could choose to fish in a

different area or not to fish. In the Hawaii longline fishery, fishermen often chose to continue

tuna fishing in a different area during area closures instead of changing the gear type to target

swordfish because of the additional costs to switch to shallow-set fishing. Also, catch limits

were always reached in the latter part of the year when it was not the season for shallow-set

fishing. When fishermen traveled to a different fishing ground to fish, the travel distance and

Fig 3. Histogram of total trip costs for sampled trips in American Samoa longline fishery: 2006–2018.

https://doi.org/10.1371/journal.pone.0257027.g003
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fishing days might change. These behavior changes were captured in the trip cost model

because travel distance and fishing days were included as predictors in the trip cost model.

Using the trip cost model to estimate trip costs of different subgroups, we can evaluate the trip

cost effects due to area closures.

Results

When using different distribution and link function assumptions to run Eq (2), the same func-

tional form was found. The functional form of the ML model for Hawaii longline fishery trip

costs is:

gðAdjusted trip costijÞ ¼ b0 þ b1 Trip Typeij þ b2 Total Travel Distanceijþ

b3 Total Travel Distanceij2 þ b4 Monthly Fuel Priceþ b5 Fishing Daysijþ

b6 Fishing Daysij2 þ b7 Vessel Lengthj þ b8 Vessel Gross Tonnagejþ

b9 Vessel Gross Tonnagej2 þ εij:

ð3Þ

The functional form of the ML model for American Samoa longline fishery trip costs is:

gðAdjusted trip costijÞ ¼ b0 þ b1 Average Travel Distance to Fishing Groundijþ

b2ðAnnual Fuel PriceÞ
1=2
þ b3 Fishing Daysij þ b4 Fishing Daysij2þ

b5 Vessel Gross Tonnage Per Footj þ εij;

ð4Þ

where i stands for individual fishing trip and j stands for individual vessel, and Trip Typeij = 1

for shallow-set trips and Trip Typeij = 0 for deep-set trips in the Hawaii models.

Tables 4 and 5 show the prediction results from the ML models for the training data and

test data and the cross-validation model results for Hawaii and American Samoa, respectively.

Both tables show that for all models, the root mean squared error (RMSE) and mean absolute

error (MAE) decreased when the models were scored on the test data, indicating overfitting

did not occur and the models had good predictive power. For Hawaii models, Gaussian with

log link had the lowest errors in the training data whereas gamma with log link had better pre-

diction results in the test data. For American Samoa models, Gaussian with log link had the

best prediction results. Multicollinearity of covariates was checked using Variance Inflation

Factor (VIF). The VIF values for all covariates (excluding the squared terms) in the estimation

Table 4. Machine learning model prediction results for Hawaii longline fishery tip cost models.

Gaussian with identity link Gaussian with log link Gamma with log link

Prediction results for the training data, n = 2,196

RMSE 7,527 7,174 7,186

MAE 5,486 5,222 5,229

R2 0.765 0.787 0.786

Prediction results for the test data, n = 550

RMSE 7,141 7,046 7,036

MAE 5,254 5,137 5,126

R2 0.770 0.776 0.777

10-fold cross-validation prediction results for the training data, n = 2,196

RMSE 7,588 7,239 7,237

MAE 5,524 5,260 5,260

R2 0.761 0.783 0.783

https://doi.org/10.1371/journal.pone.0257027.t004
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models were less than 4 for the Hawaii models and around 1 for the American Samoa models,

indicating no multicollinearity.

The results show that the functional forms for trip cost estimation for the Hawaii longline

(3) and American Samoa longline (4) are similar, but with two differences. One difference is

total travel distance and its squared term are important covariates in the Hawaii models

whereas average travel distance to fishing ground is an important covariate in the American

Samoa models. This could be due to the different trip characteristics as shown in Tables 1 and

2. The other difference is the American Samoa models perform better with vessel gross ton-

nage per foot, whereas the Hawaii trip cost models perform better with gross tonnage and its

squared term. The negative coefficient of the squared gross tonnage indicates that the Hawaii

longline trip costs are increasing at a decreasing rate in relation with gross tonnage. The differ-

ence in fishing operational areas that affected the travel distance to fishing ground could cause

the different economies of scale from vessel size and capacity.

Using the entire available trip cost data and the machine training models, we estimated the

coefficients of the models. Table 6 shows the model results for Hawaii longline trip costs.

Residuals vs. fitted values plots and Q-Q plots show that gamma with log link model performs

better. Residuals from OLS model and Gaussian with log link model exhibit heteroscedasticity

(Figs 4 and 5). We consider gamma with log link the best model because of the symmetric dis-

tribution of the residuals and the more normally distributed standardized residuals, and also

the better prediction performance in the test data in step 1.

Table 7 shows the model results for American Samoa longline trip costs. Residuals vs. fitted

values plots show a more symmetric distributed residuals in gamma with log link model (Fig

6), and Q-Q plots show gamma with log link model performs slightly better (Fig 7). It is hard

to determine the best model because Gaussian with log link performed the best in prediction

but gamma with log link showed better distribution of residuals.

Model fitting

To examine the model fitting, we compared the estimated trip costs from the models with the

actual trip costs for the same sampled trips (Table 8). For Hawaii, the GLM that produced the

best model results, gamma with log link, was used for cost estimation. The average estimated

trip cost for the sampled Hawaii longline trips was $33,725, which was almost the same as the

actual trip cost ($33,738). The model also estimated well for both deep-set and shallow-set

trips.

Table 5. Machine learning model prediction results for American Samoa longline fishery tip cost models.

Gaussian with identity link Gaussian with log link Gamma with log link

Prediction results for the training data, n = 124

RMSE 11,205 10,950 11,250

MAE 8,477 8,167 8,473

R2 0.734 0.746 0.732

Prediction results for the test data, n = 31

RMSE 9,421 8,881 10,225

MAE 7,553 7,111 8,036

R2 0.691 0.725 0.636

20-fold cross-validation prediction results for the training data, n = 124

RMSE 11,799 11,570 12,335

MAE 8,925 8,665 9,257

R2 0.705 0.717 0.678

https://doi.org/10.1371/journal.pone.0257027.t005
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For American Samoa, the model fitting results for both Gaussian with log link and gamma

with log link models are presented in Table 9. The estimated trip costs for sampled trips from

the two models were very close to the actual trip costs (-0.3% difference).

Policy analysis (Regulatory Impact Analysis)

In this section, we examined the cost impacts of area closures due to reaching the annual big-

eye tuna catch limits to the Hawaii longline fleet. We applied the Hawaii trip cost model

(gamma with log link) and used the trip operational data and vessel characteristics for all

deep-set trips (target bigeye tuna) to estimate the trip costs for all deep-set trips in the entire

study period between 2005 and 2018. We tested if the fishery closures affected the cost function

structure by adding two dummy variables that represented trips affected by the WCPO and

EPO closures in the estimated trip cost model and the results showed that the dummy variables

were not significant. This validated the use of the estimated Hawaii trip cost model for this pol-

icy analysis.

Among all the Hawaii deep-set longline trips between 2005 and 2018 (18,894 trips), five trip

types were identified (Table 10). The first three types were under normal operations without

any closures, these included trips that: 1) only fished within WCPO (76.5%), 2) fished in both

Table 6. Model results for Hawaii longline fishery tip costs.

OLS Gaussian with log link Gamma with log link

Trip type 13,284.08�� 0.3257�� 0.3298��

(31.91) (32.95) (27.50)

Total travel distance (km) 0.46 0.0001�� 0.0001��

(0.94) (9.25) (7.77)

Total travel distance2 (km) 0.0004�� -0.00000001�� -0.000000005�

(5.00) (-4.27) (-2.24)

Monthly fuel price 5,632.59�� 0.1622�� 0.1693��

(21.92) (23.94) (22.88)

Fishing days 459.25�� 0.0482�� 0.0570��

(2.94) (10.48) (12.68)

Fishing days2 20.87�� -0.0006�� -0.0009��

(4.13) (-4.74) (-6.13)

Vessel length (feet) 219.29�� 0.0075�� 0.0072��

(7.10) (8.71) (8.08)

Vessel gross tonnage 80.66�� 0.0064�� 0.0061��

(3.42) (8.24) (9.05)

Vessel gross tonnage2 -0.23�� -0.000021�� -0.000021��

(-2.64) (-7.90) (-8.27)

Constant -35,260.74�� 7.6447�� 7.6210��

(-16.48) (108.85) (123.64)

Observations 2,746 2,746 2,746

AIC 56,773 56,548 55,955

RMSE 7,438 7,140 7,158

MAE 5,428 5,194 5,200

R2 0.767 0.785 0.775

Note.—Numbers in parenthesis are t-ratios

� significant at the 5% level

�� significant at the 1% level.

https://doi.org/10.1371/journal.pone.0257027.t006

PLOS ONE Fishing trip cost modeling using generalized linear model and machine learning methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0257027 September 7, 2021 13 / 23

https://doi.org/10.1371/journal.pone.0257027.t006
https://doi.org/10.1371/journal.pone.0257027


Fig 4. Residuals vs. fitted values plots for Hawaii longline fishery trip cost models�. � Residuals represent deviance residuals for GLM. The

red line represents the average value of the residuals at each value of fitted value.

https://doi.org/10.1371/journal.pone.0257027.g004
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Fig 5. Q-Q plots for standardized deviance residuals for Hawaii longline fishery trip cost models.

https://doi.org/10.1371/journal.pone.0257027.g005
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WCPO and EPO within one trip (12.9%), 3) only fished within EPO (7.7%). The other two

types included 4) trips within EPO by the affected vessels during the WCPO closures (1.7%),

and 5) trips within WCPO by the affected vessels during the EPO closures (1.2%). Although

only a small percentage of trips (2.9%) were affected by the closures, but the percent of affected

vessels was high (73%). For trips that were taken by the affected vessels during the WCPO clo-

sures (type 4), their travel distances and fishing days were significantly longer than the regular

trips that fished exclusively in the WCPO (type 1), the area where vessels were most likely to

fish without the WCPO closures. The behavior of increasing fishing effort during the WCPO

closures was consistent with Chan [53] and Mangi et al. [54] in the way that vessels used to fish

inside the closed areas had increased their fishing effort after the marine protected area clo-

sures. On the other hand, for vessels that were affected during the EPO closures (type 5), their

trips had the shortest travel distances and longest fishing days. The average trip costs for each

of the trip types are shown in Table 10. For the trips taken by the affected vessels during the

WCPO closures (type 4), the average trip cost ($29,092) was higher than the regular WCPO

trips (type 1) because of the longer travel distances (+1,667 km) and fishing days (+1 day).

Therefore, if the bigeye catch limit in WCPO reduced further, we could expect the trip cost to

increase by 14% on average, as affected vessels have to move to the EPO, otherwise stop

fishing.

Conclusions and discussion

Fishing trip cost is an important element for evaluating economic performance of the fisheries,

and assessing the impact of fisheries management alternatives. Using the sampled trip cost

data for the two longline fisheries, this study presented a case study using parametric machine

learning algorithms to build models for trip cost estimation. We showed that using GLM with

Table 7. Model results for American Samoa longline fishery tip costs.

OLS Gaussian with log link Gamma with log link

Travel distance to fishing ground (km) 12.10 0.0003� 0.0003

(1.55) (1.98) (1.44)

Annual fuel price1/2 25,357.48�� 0.6581�� 0.4998��

(6.47) (7.47) (4.69)

Fishing days 961.71�� 0.0343�� 0.0445��

(4.61) (7.22) (7.84)

Fishing days2 -0.13 -0.0002�� -0.0003��

(-0.05) (-3.45) (-4.05)

Vessel gross tonnage per foot 11,145.03�� 0.2046�� 0.3063��

(4.14) (3.28) (4.19)

Constant -54,643.33�� 8.0915�� 8.0358��

(-6.16) (39.36) (33.30)

Observations 155 155 155

AIC 3,333 3,323 3,310

RMSE 10,788 10,455 10,947

MAE 8,100 7,722 8,126

R2 0.733 0.749 0.706

Note.—Numbers in parenthesis are t-ratios

� significant at the 5% level

�� significant at the 1% level.

https://doi.org/10.1371/journal.pone.0257027.t007
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Fig 6. Residuals vs. fitted values plots for various American Samoa longline fishery trip cost models�. � Residuals represent deviance

residuals for GLM. The red line represents the average value of the residuals at each value of fitted value.

https://doi.org/10.1371/journal.pone.0257027.g006
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Fig 7. Q-Q plots for standardized deviance residuals for various American Samoa longline fishery trip cost models.

https://doi.org/10.1371/journal.pone.0257027.g007
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ML (Lasso regularization and n-fold cross-validation techniques) was able to select model

covariates with no multicollinearity and create models with good predictive power, so that

individual trip costs could be estimated using trip and vessel-specific information of all fishing

trips. This study showed that the new approach with GLM and ML provided a better fitting

model when compared with the previous efforts in trip cost estimation for the Hawaii longline

fishery that used OLS or OLS with log transformed trip costs, as bias correction was not

required. In addition, the new modeling approach incorporated model prediction perfor-

mance, which was not considered in previous trip cost modeling research, but it is an impor-

tant performance metric to consider if we want to use the model to predict unsampled trip

costs and conduct other economic applications.

Moreover, this study presented an empirical application of the estimated trip cost model to

conduct a regulatory impact analysis, which is required by national standard guidelines of

Table 8. Estimated and actual trip costs for sampled trips in Hawaii longline fishery.

Estimated trip costs from Gamma with log link for sampled

trips

Actual trip costs for sampled

trips

All Trip Type

Mean 33,725 33,738

Std. Deviation 13,508 15,413

N 2,746 2,746

Deep-set Trips

Mean 27,710 27,668

Std. Deviation 7,188 8,980

N 2,068 2,068

Shallow-set

Trips

Mean 52,072 52,255

Std. Deviation 11,597 16,159

N 678 678

https://doi.org/10.1371/journal.pone.0257027.t008

Table 9. Estimated and actual trip costs for sampled trips in American Samoa longline fishery.

Estimated trip costs from Gaussian with log link for

sampled trips

Estimated trip costs from Gamma with log link for

sampled trips

Actual trip costs for sampled

trips

Mean 41,235 41,195 41,334

Std.

Deviation

17,833 17,774 20,932

N 155 155 155

https://doi.org/10.1371/journal.pone.0257027.t009

Table 10. Quantitative results for fishery policy analysis.

Number of trips Fishing days per trip Total travel distance (km) Estimated trip costs

($)

Type 1: Regular trips only fished in WCPO 14,457 13.0 2,227 $25,409

Type 2: Regular trips fished between WCPO and EPO 2,436 14.6 3,416 $30,974

Type 3: Regular trips only fished in EPO 1,455 13.7 4,011 $31,537

Type 4: Affected trips in EPO during WCPO closures 320 14.0 3,894 $29,092

Type 5: Affected trips in WCPO during EPO closures 226 14.8 2,083 $30,298

https://doi.org/10.1371/journal.pone.0257027.t010
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NOAA Fisheries. With the individual trip costs estimated by the Hawaii trip cost model, we

were able to quantify the fishing cost differences for different subgroups of the fleet; those were

affected by various policy regimes of area closures vs. those were not impacted. For example,

an average 14% increase in trip costs was found due to the area closures in the WCPO. How-

ever, the impacts of EPO closures on trip costs were lower.

One potential use of the trip cost models is to predict individual trip costs using individual

trip-specific fishing operation information and vessel-specific information, and compare with

revenue to evaluate the net returns for individual trips and at subgroup and fleet-wide level.

The estimated trip costs from the trip cost model provides important information for sustain-

able fisheries management when regulatory changes or other external factors affect subgroups

of a fleet differently. In addition, the trip cost models estimated in this study can be used in dif-

ferent fishery studies such as ecosystem modeling by adding the dynamic analysis of trip costs

in different vessels.

Another potential application of the Hawaii trip cost model is to examine the effects of trip

costs from climate change. Evidence suggests that the Hawaii longline fishermen have changed

their behavior over time and space in accordance with oceanographic variability. Particularly,

the Hawaii deep-set longline fishery has migrated and expanded the fishing effort to the north-

east of the main Hawaiian Islands in the third quarter of the year due to the vertical overlap of

bigeye tuna’s preferred thermal habitat with the depth of the deep-set hooks. This migration of

fishing effort potentially could affect the economic performance of the fleet as the fleet was

traveling further to their fishing ground [37, 55]. If we could determine the climate change

impact on travel distance and fishing days, the trip cost model could be used to estimate the

impact of climate change on trip costs and the potential economic effects on the fleet could be

evaluated.

It is important to note that there are some limitations on the model applications. External

changes in the future may affect the structure of the trip cost models. For example, if there

were a significant improvement in vessel technology that affect the fuel efficiency, this would

change the relationship between vessel characteristics and trip costs. Thus, a new trip cost

model may be needed to take into account the external changes. For model application to esti-

mate trip costs in the future, since the cost functions were developed using the data adjusted to

2018 dollars, the predicted cost for the future years may need to be inflation adjusted to its cur-

rent value. Nevertheless, this study provides a rather direct and robust modeling approach

using fishing operational data and vessel characteristics that are commonly available to predict

trip costs for the two most important commercial fisheries in the Pacific Island region.
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